graviti logo产品公开数据集关于我们
登录
248
0
2
HACS
创建来自Hello Dataset / Robert
概要
活动

Overview

"Human Action Clips and Segments Dataset for Recognition and Temporal Localization 1.55M clips on 504K videos, 140K segments on 50K videos" This project introduces a novel video dataset, named HACS (Human Action Clips and Segments). It consists of two kinds of manual annotations. HACS Clips contains 1.55M 2-second clip annotations; HACS Segments has complete action segments (from action start to end) on 50K videos. The large-scale dataset is effective for pretraining action recognition and localization models, and also serves as a new benchmark for temporal action localization. (*SLAC dataset is now part of HACS dataset.)

Format

Annotation File Format

For HACS Clips, the annotation file is HACS_v1.1.1/HACS_clips_v1.1.1.csv. "label": 1/"label": -1 refers to positive/negative sample. The format looks like the following:

classname,youtube_id,subset,start,end,label
Archery,a2X2hz1G6i8,training,15.5,17.5,1
Archery,NUdji_CqvcY,training,77.5,79.5,-1
Archery,0O_qMHxBfXg,training,24.5,26.5,-1
...

For HACS Segments, the annotation file is HACS_v1.1.1/HACS_segments_v1.1.1.json , with the same format as ActivityNet dataset:

{
  "database": {
    "--0edUL8zmA": {
        "annotations": [
            {"label": "Dodgeball", "segment": [5.40, 11.60]},
            {"label": "Dodgeball", "segment": [12.60, 88.16]},
        "subset": "training",
        "duration": "92.166667",
        "url": "https://www.youtube.com/watch?v=--0edUL8zmA"
    },
  ...
  },
}

Instruction

Download Annotation Files

1. Clone this repository:

git clone [https://github.com/hangzhaomit/HACS-dataset.git](https://github.com/hangzhaomit/HACS-dataset.git)

2. Unzip annotation files:

unzip HACS_v1.1.1.zip

3. Check dataset statistics:

python dataset_stats.py

You should expect the following output:

====Parsing clips====
[training set]: 492748 videos, 1509478 clips
[validation set]: 5981 videos, 20245 clips
[testing set]: 5987 videos, 20293 clips
====Parsing segments====
[training set]: 37613 videos
[validation set]: 5981 videos
[testing set]: 5987 videos
Done.

Download Videos

1. Install the following libraries:

2. Run the following command to download videos:

python download_videos.py --root_dir ROOT_DIR [--dataset {all,segments}] [--shortside SHORTSIDE]
  • ROOT_DIR is the root path to save the downloaded videos; videos are saved in the following directory structure ROOT_DIR/CLASSNAME/v_ID.mp4;
  • You can either download all videos (default), or only HACS Segments videos with --dataset segments;
  • By default, we resize videos with short side of 256 for less disk usage, you can change with --shortside.

Request testing videos and missing videos: (NEW)

  • To access the full testing videos, please submit a request at goo.gl . You will get links to them within 72 hours.

  • YouTube videos can dissapear over time, so you may find the videos you downloaded incomplete, we provide the following solution for you to have access to missing videos. (a) Run python check_missing_videos.py to generate text file missing.txt containing missing video IDs. You can also create your own in the following format {VIDEO_ID,CLASS_NAME}: WWowbBQB1lU,Ironing_clothes Kb08E4K8fg8,Pole_vault NKB_CEA5jNQ,Playing_squash ... (b) Submit a video request by agreeing to terms of use at: goo.gl . You will get links to the missing videos within 72 hours. (c) Use the download script to download missing videos by running python download_videos.py --root_dir ROOT_DIR --dataset missing --missing_url "http://sample.missing/urls.txt"

Citation

@article{zhao2019hacs,
    title={HACS: Human Action Clips and Segments Dataset for Recognition and Temporal Localization},
    author={Zhao, Hang and Yan, Zhicheng and Torresani, Lorenzo and Torralba, Antonio},
    journal={arXiv preprint arXiv:1712.09374},
    year={2019}
}

@inproceedings{zhao2019hacs,
  title={Hacs: Human action clips and segments dataset for recognition and temporal localization},
  author={Zhao, Hang and Torralba, Antonio and Torresani, Lorenzo and Yan, Zhicheng},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8668--8678},
  year={2019}
}

License

BSD-3-Clause

数据集信息
应用场景Action/Event Detection
标注类型Classification
LicenseBSD-3-Clause
更新时间2021-03-24 22:54:16
数据概要
数据格式Video
数据数量0
文件大小15KB
标注数量0
版权归属方
Hang Zhao
标注方
未知
了解更多和支持
相关数据集
ARID
创建来自Robert
FIRESENSE
创建来自Robert
立即开始构建AI
免费开始联系我们